Optimizing Nickel Mine Slope Designs: Integrating Geotechnical Data and Limit Equilibrium Methods

Authors

  • Anafi Minmahddun Department of Civil Engineering, Engineering Faculty, Halu Oleo University
  • Laode Jonas Tugo Department of Mining Engineering, Faculty of Mathematics and Natural Sciences, Halu Oleo University

DOI:

https://doi.org/10.37253/jcep.v6i1.10383

Keywords:

Limit Equilibrium Method, Limonite, Nickel Laterite, Safety Factor, Saprolite

Abstract

Slope stability in nickel laterite mines is critically influenced by the distinct geotechnical properties of limonite and saprolite weathering profiles. These materials, prevalent in tropical mining regions, exhibit significantly different responses to hydrological and mechanical stresses, necessitating detailed stability assessments for safe mine operations. This study combines field investigations, laboratory testing, and Limit Equilibrium Method (LEM) analysis to evaluate slope stability. Geotechnical parameters were determined through standardized tests and slope stability analyses examined both single-slope (40°-60° angles) and overall-slope configurations with varying bench geometries (widths 3-5m, angles 29°-60°). The analysis demonstrated: (1) Safety factors (SF) decreased 25-30% as slope angles increased from 40° to 60°, with limonite (SF=2.8-2.1) consistently outperforming saprolite (SF=2.4-1.9); (2) Bench width significantly influenced stability, with 5m widths improving SF by 15-20% compared to 3m widths; (3) Optimal stability (SF=1.85) was achieved with gentler geometries (29° slope, 40° bench, 5m width), while steeper configurations approached critical conditions (SF=1.22). The study provides critical insights for designing stable slopes in nickel laterite mines, emphasizing: (1) material-specific slope angles, (2) wider bench designs, and (3) integrated geotechnical-LEM approaches. These findings directly address operational challenges in tropical mining environments, offering practical solutions to enhance safety while maintaining productivity. The methodology establishes a replicable framework for slope stability assessment in weathered geological profiles.

References

P. Kolapo, G. O. Oniyide, K. O. Said, A. I. Lawal, M. Onifade, and P. Munemo, “An Overview of Slope Failure in Mining Operations,” Mining, vol. 2, no. 2, pp. 350–384, Jun. 2022, doi: 10.3390/mining2020019.

F. Salmasi, J. Abraham, and B. Nourani, “Determining the Analysis of the Stability of Embankments against Sliding and Prediction of Sliding and Critical Factor of Safety,” in Novel Perspectives of Engineering Research Vol. 9, Book Publisher International (a part of SCIENCEDOMAIN International), 2022, pp. 98–125. doi: 10.9734/bpi/nper/v9/2028A.

A. Syah and F. Alami, “Geotechnical investigation, landslide mechanism and countermeasure on the road above the soft-medium clay,” J. Civ. Eng. Plan., vol. 5, no. 1, pp. 79–88, Jun. 2024, doi: 10.37253/jcep.v5i1.9373.

A. I. Theocharis, I. E. Zevgolis, A. V. Deliveris, R. Karametou, and N. C. Koukouzas, “From Climate Conditions to the Numerical Slope Stability Analysis of Surface Coal Mines,” Appl. Sci., vol. 12, no. 3, p. 1538, Jan. 2022, doi: 10.3390/app12031538.

E. Ngii, A. Minmahddun, and F. N. R. Kudus, “Rainfall Infiltration Impact on Road Embankment Stability,” Brill. Eng., vol. 4, no. 2, pp. 1–4, 2023, doi: 10.36937/ben.2023.4832.

A. S. Al-Homoud, A. A. Basma, A. I. Husein Malkawi, and M. A. Al Bashabsheh, “Cyclic Swelling Behavior of Clays,” J. Geotech. Eng., vol. 121, no. 7, pp. 562–565, Jul. 1995, doi: 10.1061/(ASCE)0733-9410(1995)121:7(562).

L. W. Abramson, T. S. Lee, S. Sharma, and G. M. Boyce, Slope Stability and Stabilization Method, Second. New York: John Wiley & Sons, 2002.

H. C. Hardiyatmo, Tanah Longsor dan Erosi: Kejadian dan Penanganan. Yogyakarta: Gadjah Mada University Press, 2012.

A. W. Bishop, “The use of the Slip Circle in the Stability Analysis of Slopes,” Géotechnique, vol. 5, no. 1, pp. 7–17, 1955.

N. Janbu, “Slope Stability Computations: In Embankment-dam Engineering.,” John Wiley Sons, pp. 47–86, 1973.

E. Spencer, “A Method of The Analysis of The Stability of Embankments Assuming Parallel Interslice Forces,” Géotechnique, vol. 17, no. 1, pp. 11–26, 1967.

N. R. Morgenstern and V. E. Price, “The Analysis of the Stability of General Slip Surfaces,” Géotechnique, vol. 15, pp. 79–93, 1965.

J. Meng, Y. Wang, H. Ruan, and Y. Liu, “Stability Analysis of Earth Slope Using Combined Numerical Analysis Method Based on DEM and LEM,” Teh. Vjesn. - Tech. Gaz., vol. 25, no. 5, Oct. 2018, doi: 10.17559/TV-20161016085231.

H. B. Wei, Q. Zhang, and J. H. Zhao, “Simplified Bishop Method Homogeneous Soil Slope Stability Analysis Based on the C# Language,” Appl. Mech. Mater., vol. 580–583, pp. 291–295, Jul. 2014, doi: 10.4028/www.scientific.net/AMM.580-583.291.

G. Zhao, J. Sun, Y. Yan, and X. Xie, “Optimal reconstruction of constrained janbu method with ADP and non-integral safety factor,” Appl. Math. Comput., vol. 457, p. 128166, Nov. 2023, doi: 10.1016/j.amc.2023.128166.

Y. Coulibaly, T. Belem, and L. Z. Cheng, “Numerical analysis and geophysical monitoring for stability assessment of the Northwest tailings dam at Westwood Mine,” Int. J. Min. Sci. Technol., vol. 27, no. 4, pp. 701–710, 2017, doi: 10.1016/j.ijmst.2017.05.012.

Y. Liu, Y. Yang, and A. Hu, “Stability analysis of loess slope combined with limit equilibrium method under different rainfall intensities,” Appl. Math. Nonlinear Sci., vol. 9, no. 1, Jan. 2024, doi: 10.2478/amns.2023.2.01384.

G. Gülsev Uyar Aksoy, C. Okay Aksoy, and O. Savas, “Slope Stability Analysis Using the 3D Limit Equilibrium Method in a Fault-Controlled Metal Mine,” in Engineering Geology and Geotechnics: Building for the Future, Proceedings of the Conference EUROENGEO 2024, University of Zagreb Faculty of Civil Engineering, Oct. 2024, pp. 521–528. doi: 10.5592/CO/EUROENGEO.2024.262.

P. A. W. Santie, W. Wilopo, and F. Faris, “Slope Stability Analysis Using Electrical Resistivity Tomography and Limit Equilibrium Method: A Case Study from Girimulyo, Kulon Progo,” J. Appl. Geol., vol. 9, no. 1, p. 37, Oct. 2024, doi: 10.22146/jag.97467.

T. F. Fathani, A. Minmahddun, and F. Faris, “Determination of Stability During First Impounding in Jatigede Earth Dam,” J. Appl. Geol., vol. 3, no. 2, p. 1, 2019, doi: 10.22146/jag.48592.

A. Alok, A. Burman, P. Samui, M. R. Kaloop, and M. Eldessouki, “A Generalized Limit Equilibrium‐Based Platform Incorporating Simplified Bishop, Janbu and Morgenstern–Price Methods for Soil Slope Stability Problems,” Adv. Civ. Eng., vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/3053923.

Badan Standarisasi Nasional, SNI 8460:2017 Persyaratan Perancangan Geoteknik. Jakarta: Badan Standarisasi Nasional, 2017.

Y. Zhai, W. Y. Xu, C. Shi, S. N. Wang, and H. L. Zhang, “Application of Limit Equilibrium FEM Method to the Slope,” Adv. Mater. Res., vol. 926–930, pp. 524–528, May 2014, doi: 10.4028/www.scientific.net/AMR.926-930.524.

S. Ramadhani, A. Minmahddun, M. Patuti, I., and M. Widiastuti, “Analisis Stabilitas Lereng Tambang Nikel Kabupaten Morowali,” REKONSTRUKSI TADULAKO Civ. Eng. J. Res. Dev., vol. 5, no. 1, pp. 65–70, 2024, doi: https://doi.org/10.22487/renstra.v5i1.654.

R. Zulhendra, M. Arif, A. Putra, and D. F. Hadi, “Stability Modeling of Groyne-Type Structure with Embankment in Pelangai River, Pesisir Selatan Regency, West Sumatra,” J. Civ. Eng. Plan., vol. 5, no. 2, pp. 172–180, 2024, doi: https://doi.org/10.37253/jcep.v5i2.10007.

Badan Standarisasi Nasional, SNI 1743:2008 Cara Uji Kepadatan Berat Untuk Tanah. Bandung: Badan Standarisasi Nasional, 2008.

Badan Standarisasi Nasional, SNI 3420:2016 Metode Uji Kuat Geser Langsung Tanah Terkonsolidasi dan Terdrainase. Jakarta: Badan Standarisasi Nasional, 2008.

Kementerian Energi dan Sumber Daya Mineral, Keputusan Menteri Energi dan Sumberdaya Mineral Republik Indonesia No. 1827 Tentang Pedoman Pelaksanaan Kaidah Teknik Pertambangan Yang Baik. Jakarta, 2018.

F. Bahfie, A. Manaf, W. Astuti, F. Nurjaman, and E. Prasetyo, “Studies of carbon percentage variation and mixing Saprolite-Limonite in selective reduction,” Mater. Today Proc., vol. 62, pp. 4156–4160, 2022, doi: 10.1016/j.matpr.2022.04.679.

D. Airey, A. Suchowerska, and D. Williams, “Limonite – a weathered residual soil heterogeneous at all scales,” Géotechnique Lett., vol. 2, no. 3, pp. 119–122, Sep. 2012, doi: 10.1680/geolett.12.00026.

E. Elkamhawy, B. Zhou, and H. Wang, “Experimental investigation of both the disturbed and undisturbed granitic saprolite soil,” Environ. Earth Sci., vol. 79, no. 11, p. 276, Jun. 2020, doi: 10.1007/s12665-020-09026-y.

H. He, X. Lv, and J. Wang, “Characteristics Evaluation and High Effective Utilization of Limonite Ores in Sintering Process,” Mining, Metall. Explor., vol. 38, no. 5, pp. 2271–2283, Oct. 2021, doi: 10.1007/s42461-021-00481-0.

Downloads

Published

2025-06-02

Issue

Section

Articles