Perbandingan Kinerja Apriori Dan FP-Growth Dalam Pencarian Pola Asosiasi Pada Data Promosi Pendidikan

Authors

  • Zainul Arifin Universitas Muhammadiyah Jember
  • Hardian Oktavianto Universitas Muhammadiyah Jember
  • Taufiq Timur Warisaji Universitas Muhammadiyah Jember
  • Henny Wahyu Sulistyo Universitas Muhammadiyah Jember

DOI:

https://doi.org/10.37253/joint.v6i2.10973

Abstract

Data mining, khususnya Association Rule Mining, digunakan untuk mengidentifikasi hubungan tersembunyi dalam data dan menemukan aturan asosiasi yang bermakna, dengan algoritma seperti Apriori dan FP-Growth yang meningkatkan efisiensi dalam proses ini. Dalam konteks pendidikan, teknik ini dapat membantu sekolah dalam mengoptimalkan strategi promosi dengan menyesuaikan pesan dan penawaran berdasarkan preferensi audiens, sehingga meningkatkan efektivitas alokasi sumber daya. Dengan memanfaatkan Association Rule Mining, sekolah dapat merancang strategi berbasis data untuk menarik dan mempertahankan siswa. Pada penelitian ini akan dilakukan perbandingan penggunaan Apriori dan FP-Growth dalam mencari rule asosiasi pada data pendidikan untuk menunjang promosi sekolah SMP 1 Muhammadiyah. Algoritma Apriori dan FP-Growth dapat digunakan untuk menganalisis pola asosiasi dalam data pendidikan guna mendukung strategi promosi SMP Muhammadiyah 1. Hasil analisis menghasilkan 16 aturan asosiasi dari Apriori dan 6 aturan dari FP-Growth, Apriori menunjukkan bahwa mayoritas calon siswa berasal dari Kecamatan Kaliwates dan lebih banyak berasal dari Sekolah Dasar Negeri, sedangkan FP-Growth mengidentifikasi bahwa calon siswa potensial juga berasal dari Kecamatan Patrang dan Sumbersari, yang dapat menjadi fokus dalam promosi sekolah.

References

[1] C. Sarra, "Data Mining and Knowledge Discovery. Preliminaries for a Critical Examination of the Data Driven Society," Global Jurist, vol. 20, no. 1, p. 20190016, 2020.

[2] E. Acar, G. Sariyer, V. Jain and B. Ramtiyal, "Discovering Hidden Associations among Environmental Disclosure Themes Using Data Mining Approaches," Sustainability, 2023.

[3] B. Mudumba and M. F. Kabir, "Mine-First Association Rule Mining: An Integration Of Independent Frequent Patterns In Distributed Environments," Decision Analytics Journal Volume 10, 2024.

[4] L. Rosliadewi, Y. Nurfaizal, R. Waluyo and M. Imron, "Analysis of Transaction Data for Modeling the Pattern of Goods Purchase Supporting Goods Location," Journal of Applied Data Sciences 1(2), pp. 65-75, 2020.

[5] A. Hodijah and U. T. Setijohatmo, "Analysis Of Frequent Itemset Generation Based On Trie Data Structure In Apriori Algorithm," TELKOMNIKA, 19(5), pp. 1553-1564, 2021.

[6] A. Essam, M. A. Abdel-Fattah and L. Abdelhamid, "Towards Enhancing the Performance of Parallel FP-Growth on Spark," IEEE Access Volume 10, 2022.

[7] M. E. H. Benelhadj, M. M. Deye and Y. Slimani, "Signature-based Tree for Finding Frequent Itemsets," Journal of Communications Software and Systems, vol. 19, no. 1, pp. 70-80, 2023.

[8] A. Shamseen, M. M. Zanjireh, M. Bahaghighat and Q. Xin, "Developing A Parallel Classifier For Mining In Big Data Sets," IIUM Engineering Journal Vol. 22 No.2, 2021.

[9] N. Rosyidah, Matin and U. Rosyidi, "Internationalization in Higher Education: University’s Effective Promotion Strategies in Building International Trust," European Journal Of Educational Research, 2020.

[10] J. P. B. Saputra, S. A. Rahayu and T. Hariguna, "Market Basket Analysis Using FP-Growth Algorithm to Design Marketing Strategy by Determining Consumer Purchasing Patterns," Journal of Applied Data Science vol.4 No.1, 2023.

[11] M. H. Avizenna, "Applying the Apriori Algorithm to Analyze and Optimize Medical Device Inventory Management," Journal of Applied Data Science Vol.3 No.4, 2022.

[12] Y. A. Zakur, S. B. Mirashrafi and L. R. Flaih, "A Comparative Study on Association Rule Mining Algorithms on the Hospital Infection Control Dataset," Bahgdad Science Journal Vol.20 No.5, 2023.

[13] P. Naresh and R. Suguna, "Implementation Of Dynamic And Fast Mining Algorithms On Incremental Datasets To Discover Qualitative Rules," Applied Computer Science Vol. 17 No. 3, 2021.

[14] S. B. and S. G., "Privacy Preserving Association Rule Hiding Using Border Based Approach," Indonesian Journal of Electrical Engineering and Computer Science Vol. 23 No. 2, 2021.

Downloads

Published

2025-07-31