Optimasi Strategi Promosi Pendidikan Menggunakan Algoritma FP-Growth untuk Identifikasi Wilayah Strategis
DOI:
https://doi.org/10.37253/joint.v6i1.10295Keywords:
association rule mining, data mining, FP-Growth, promosi sekolahAbstract
SMP Muhammadiyah 1 Jember menghadapi tantangan dalam menarik siswa baru akibat promosi yang kurang efektif dan kesalahan dalam menentukan target pasar, sehingga diperlukan strategi yang lebih tepat. Dengan menerapkan algoritma FP-Growth dalam data mining, sekolah dapat mengidentifikasi daerah strategis untuk promosi yang lebih efisien dan berdampak besar. Penelitian ini mengumpulkan 407 data siswa SMP Muhammadiyah 1 Jember dari tahun ajaran 2017 hingga 2023 melalui observasi langsung, yang terdokumentasi dalam Excel dan buku induk siswa untuk menganalisis perkembangan serta karakteristik siswa. Pengujian menggunakan Jupyter Notebook dengan support 0,1 dan 0,05, serta Lift minimal 1, menghasilkan 4 rule asosiasi pada support 0,1 dan 20 rule asosiasi pada support 0,05. Seleksi dilakukan dengan memprioritaskan aturan yang memiliki itemset kecamatan pada antecedent-nya untuk mendukung strategi promosi sekolah. Hasil seleksi menunjukkan bahwa Kecamatan Kaliwates, Patrang, dan Sumbersari merupakan wilayah dengan calon siswa potensial, sehingga promosi dapat difokuskan di daerah tersebut.
Downloads
References
M. Dâmaso and J. Á. D. Lima, "Marketing the School? How Local Context Shapes School Marketing Practices," Journal of School Choice, vol. 14, no. 1, p. 26–48, 2019.
D. Ü. Erdil, M. Tümer, H. Nadiri and I. Aghaei, "Prioritizing Information Sources and Requirements in Students’ Choice of Higher Education Destination: Using AHP Analysis," SAGE Open, 11(2), 2021.
D. Gonda and P. Poór, "Use of Maturity Model to Create an Effective Marketing Mix with a Focus on Educational Facilities," Sustainability Volume 15 Issue 8, 2023.
E. Greaves, D. Wilson and A. Nairn, "Marketing and School Choice: A Systematic Literature Review," Review of Educational Research, pp. 825-861, 2023.
K. Chaudhary, P. Kumar, S. Chauhan and V. Kumar, "Optimal Promotional Policy of an Innovation Diffusion Model Incorporating The Brand Image in A Segment-Specific Market," Journal of Management Analytics Volume 9 Issue 1, 2022.
J. Prach, A. T. Johnson and S. Ferguson, "College Choice & The Consumer: The Impact of Gender on Higher Education Enrollment," Journal of Marketing for Higher Education Volume 34 Issue 1, 2024.
W. M. Lim, T. W. Jee and E. C. De Run, "Strategic brand management for higher education institutions with graduate degree programs: empirical insights from the higher education marketing mix," Journal of Strategic Marketing, 28(3), p. 225–245, 2018.
S. Agal, P. Sharma, C. R. Mohan, P. Madan, M. V and H. S. Arri, "Using Machine Learning Algorithms to Suggest a Method for Predictive Analysis in Data Mining," in 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG), 2023.
F. Hassan and S. F. Behadili, "Modeling Social Networks using Data Mining Approaches-Review," Iraqi Journal of Science Vol 63 No 3, 2022.
C. Fernandez-Basso, M. D. Ruiz and M. J. Martin-Bautista, "New Spark Solutions For Distributed Frequent Itemset and Association Rule Mining Algorithms," Cluster Computing Volume 27, p. 1217–1234, 2024.
M. Maruseac and G. Ghinita, "Precision-Enhanced Differentially-Private Mining of High-Confidence Association Rules," IEEE Transactions on Dependable and Secure Computing Volume: 17, Issue: 6, 2020.
M. Vives-Mestres, R. S. Kenett, S. Thió-Henestrosa and J. A. Martín-Fernández, "Measurement, Selection, and Visualization of Association Rules: A Compositional Data Perspective on Association Rules," Quality and Reliability Engineering International Volume 38 Issue 3, 2022.
S. Bagui, K. Devulapalli and J. Coffey, "A Heuristic Approach for Load Balancing The FP-Growth Algorithm on MapReduce," Array Volume 7, 2020.
B. Mohanty, M. Tripathy and S. Champati, "Performance Analysis of Association Rule Mining Algorithms: Evidence from the Retailing Industry," Journal of Engineering Science and Technology Review Volume 16, pp. 108 - 122, 2023.
K. A. Happawana and B. J. Diamond, "Association Rule Learning in Neuropsychological Data Analysis for Alzheimer's Disease," Journal of Neuropsychology 16, 2021.