Analisis Efektivitas Algoritma Komputasi pada Sistem Pendukung Keputusan

Authors

  • Ahmad Budi Trisnawan Universitas Mahakarya Asia

Keywords:

Decision Support Systems, Computational Algorithms, Decision Trees, Naive Bayes, K-NN

Abstract

Decision Support Systems (DSS) play a crucial role in assisting decision-makers by analyzing large and complex datasets to generate actionable insights. The core performance of a DSS relies heavily on the computational algorithms embedded within its structure, which are responsible for data processing, pattern recognition, and prediction. This study aims to evaluate the effectiveness of three commonly used algorithms Decision Tree (C4.5), Naive Bayes, and K-Nearest Neighbor (K-NN) in supporting decision-making processes using healthcare-related data. The analysis focuses on three performance metrics: classification accuracy, computational speed, and memory usage. A benchmark dataset on heart disease from the UCI Machine Learning Repository was utilized for empirical testing. Results indicate that the Decision Tree algorithm achieved the highest accuracy (92%) and interpretability, making it well-suited for transparent decision-making contexts. Naive Bayes demonstrated the fastest processing time and lowest memory consumption, making it ideal for real-time or resource-constrained systems. Meanwhile, K-NN showed moderate performance but was sensitive to parameter tuning and data volume. These findings suggest that algorithm selection should be aligned with system requirements and resource availability. The study contributes to the development of more efficient and tailored decision support systems by providing empirical evidence of algorithmic strengths and limitations across multiple evaluation dimensions.

References

[1] E. P. Widianti and S. Lestari, “Implementasi K-Means Clustering Pada Big Data Di Sistem Rekomendasi Film,” Jurnal Pendidikan Tambusai, vol. 8, no. 2, pp. 21567–21576, 2024.

[2] Vina Avianingsih, Muhammad Eka Firmansyah, Jarudin, and Santoso, “Optimalisasi Pengambilan Keputusan Promosi Digital dengan Pemasaran Berbasis Data Metode MCDM (Multiple Criteria Decision Making),” JSAI : Journal Scientific and Applied Informatics, vol. 08, no. 2, pp. 410–419, Jun. 2025, doi: 10.36085.

[3] Jeperson Hutahean, Fifto Nugroho, Dahlan Abdullah, Kraugusteeliana, and Qurrotul Aini, Sistem Pendukung Keputusan, 1st ed. Jakarta: Yayasan Kita Menulis, 2023.

[4] Dinda Fransiska, “Sistem Pendukung Keputusan Menentukan E-Commerce Terbaik Menggunakan Metode Weighted Product,” PROSISKO: Jurnal Pengembangan Riset & Observasi Sistem Komputer, vol. 10, no. 1, pp. 41–48, Mar. 2023.

[5] Ardiansyah et al., Buku Ajar Sistem Pendukung Keputusan, 1st ed. Klaten: PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: www.buku.sonpedia.com

[6] Syafiatun Ihsani Luthfiyah and Rina Candra Noor Santi, “Sistem Pendukung Keputusan (SPK) Penentuan Algoritma dan Metode Penelitian dengan Metode Simple Additive Weighting (SAW),” Jurnal Informatika & Rekayasa Elektronika), vol. 5, no. 2, pp. 173–180, Nov. 2022, [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jireISSN.2620-6900

[7] Nugraha Rahmansyah and Sahry Armonitha Lusinia, Buku Ajar Sistem Pendukung Keputusan. Padang: Pustaka Galeri Mandiri, 2021. [Online]. Available: http://jurnal.pustakagalerimandiri.co.id

[8] I. Ismail and A. Mukhlis, “Sistem Pendukung Keputusan Penentuan Jurusan Menggunakan Metode Multi Factor Evaluation Process (MFEP) di SMAN 5 Soppeng,” Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), vol. 6, no. 1, pp. 9–19, Apr. 2023, doi: 10.57093/jisti.v6i1.143.

[9] M. Akbar and W. Yustanti, “Pemilihan Algoritma Klasifikasi Terbaik Untuk Prediksi Jenis Keluhan MI User Interface (MIUI) 14,” JINACS: Journal of Informatics and Computer Science, vol. 06, no. 02, pp. 445–452, 2024.

[10] Syasya Aisyah and Yahfizham Yahfizham, “Manfaat Pemahaman Algoritma Pemrograman Dalam Meningkatkan Kemampuan Pemecahan Masalah,” Jurnal Arjuna : Publikasi Ilmu Pendidikan, Bahasa dan Matematika, vol. 1, no. 6, pp. 67–75, Nov. 2023, doi: 10.61132/arjuna.v1i6.294.

[11] A. Prayoga Permana, K. Ainiyah, and K. Fahmi Hayati Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKa: Jurnal Informatika Sunan Kalijaga, vol. 6, no. 3, pp. 178–188, Sep. 2021, [Online]. Available: https://www.kaggle.com/manishkc06/startup-success-prediction.

[12] F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 3, pp. 689–694, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

[13] Gebrina Divva Meuthia Zulma, Angelika, and Nurul Chamidah, “Perbandingan Metode Klasifikasi Naive Bayes, Decision Tree Dan K-Nearest Neighbor Pada Data Log Firewall,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 679–688, Apr. 2021.

[14] Bayu Nur Angga, “Komparasi Algoritma Decision Tree, K-Nearest Neighbors (KNN) dan Naïve Bayes pada Pengobatan Penyakit Kutil Menggunakan Cryotherapy,” PROKASDADIK: Prosiding Seminar Kecerdasan Artifisial, Sains Data, dan Pendidikan Masa Depan, vol. 1, pp. 257–261, Dec. 2023.

[15] Thiara Tri Funny Manguma and Emil Fatra, “Analisis Performa Algoritma Klasifikasi untuk Deteksi Spam pada Email,” INNOVATIVE: Journal Of Social Science Research, vol. 4, no. 3, pp. 16461–16465, 2024.

Published

2025-07-30

How to Cite

Ahmad Budi Trisnawan. (2025). Analisis Efektivitas Algoritma Komputasi pada Sistem Pendukung Keputusan. Telcomatics, 10(1). Retrieved from https://journal.uib.ac.id/index.php/telcomatics/article/view/11022

Issue

Section

Articles